论文标题

网络轨迹的相关性

Correlations of network trajectories

论文作者

Lacasa, Lucas, Rodriguez, Jorge P., Eguiluz, Victor M.

论文摘要

时间网络模拟复杂系统中元素之间的相互作用如何随着时间的流逝而发展。就像复杂的系统显示集体动力学一样,在这里,我们将时间网络解释为遵循潜在图形动态系统在图形空间中执行集体运动的轨迹。在此范式下,我们提出了一种测量网络如何脉动和集体随着时间和空间的波动的方法。为此,我们将线性相关函数的概念扩展到网络快照序列的情况,即网络轨迹。我们构建随机和确定性的图形动力学系统,并表明新兴的集体相关性是通过简单措施很好地捕获的,并说明了在不同域中出现的经验网络中如何揭示了这些模式。

Temporal networks model how the interaction between elements in a complex system evolve over time. Just like complex systems display collective dynamics, here we interpret temporal networks as trajectories performing a collective motion in graph space, following a latent graph dynamical system. Under this paradigm, we propose a way to measure how the network pulsates and collectively fluctuates over time and space. To this aim, we extend the notion of linear correlations function to the case of sequences of network snapshots, i.e. a network trajectory. We construct stochastic and deterministic graph dynamical systems and show that the emergent collective correlations are well captured by simple measures, and illustrate how these patterns are revealed in empirical networks arising in different domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源