论文标题

多元椭圆扩散过程的浓度分析

Concentration analysis of multivariate elliptic diffusion processes

论文作者

Aeckerle-Willems, Cathrine, Strauch, Claudia, Trottner, Lukas

论文摘要

我们证明了连续和离散时间添加剂功能的浓度不平等和相关的PAC界限,用于可能是多元,不可逆的扩散过程的无界函数。我们的分析依赖于通过泊松方程的方法,使我们能够考虑一系列非常广泛的指数呈现的过程。这些结果增加了现有的浓度不平等,用于扩散过程的加性功能,这些功能仅适用于有界函数或从明显较小的类中的过程的未绑定函数。我们通过两个截然不同的区域的例子来证明这些指数不平等的力量。考虑到在稀疏性约束下可能具有高维参数非线性漂移模型,我们应用连续的时间浓度结果来验证Lasso估计的受限特征值条件,这对于甲骨文不平等的推导至关重要。离散添加功能的结果用于研究未经调整的Langevin MCMC算法,用于采样中等重尾密度$π$。特别是,我们为多项式增长功能的样品蒙特卡洛估计量$ f $提供了PAC界限,以量化了足够的样品和阶梯尺寸,以近似于规定的余量,具有很高的可能性。

We prove concentration inequalities and associated PAC bounds for continuous- and discrete-time additive functionals for possibly unbounded functions of multivariate, nonreversible diffusion processes. Our analysis relies on an approach via the Poisson equation allowing us to consider a very broad class of subexponentially ergodic processes. These results add to existing concentration inequalities for additive functionals of diffusion processes which have so far been only available for either bounded functions or for unbounded functions of processes from a significantly smaller class. We demonstrate the power of these exponential inequalities by two examples of very different areas. Considering a possibly high-dimensional parametric nonlinear drift model under sparsity constraints, we apply the continuous-time concentration results to validate the restricted eigenvalue condition for Lasso estimation, which is fundamental for the derivation of oracle inequalities. The results for discrete additive functionals are used to investigate the unadjusted Langevin MCMC algorithm for sampling of moderately heavy-tailed densities $π$. In particular, we provide PAC bounds for the sample Monte Carlo estimator of integrals $π(f)$ for polynomially growing functions $f$ that quantify sufficient sample and step sizes for approximation within a prescribed margin with high probability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源