论文标题

使用跨凝结法更新贝叶斯更新的认证尺寸

Certified Dimension Reduction for Bayesian Updating with the Cross-Entropy Method

论文作者

Ehre, Max, Flock, Rafael, Fußeder, Martin, Papaioannou, Iason, Straub, Daniel

论文摘要

在反问题中,基于模型响应的观察结果估算模型的参数。贝叶斯的方法对于解决此类问题非常有力。一个人为参数状态制定了先前的分布,该分布与观测值更新以计算后验参数分布。当先验和后部显着彼此差异和/或参数空间是高维时,解决后验分布的求解可能具有挑战性。我们使用一系列重要的采样措施,通过降低了接近逆问题的可能性,从而在先验和后验之间表现出显着距离。每种重要性抽样度量都是通过在Engel等人的贝叶斯反问题的背景下提出的跨透射最小化来确定的。 (2021)。为了有效地解决具有高维参数空间的问题,我们在原始参数空间的低维子空间中设置了最小化过程。主要思想是分析对数似然函数梯度的第二矩矩阵的光谱,以识别合适的子空间。跟随Zahm等。 (2021),提供了全维和子空间后验之间的kullback-leibler差异上的上限,可以利用它来确定与规定的近似误差绑定相对应的逆问题的有效维度。我们建议在重要性采样序列的每次迭代中最佳选择模型和模型梯度评估的次数和模型梯度评估。我们使用在各种参数空间维度设置的工程机制的示例中研究了这种方法的性能。

In inverse problems, the parameters of a model are estimated based on observations of the model response. The Bayesian approach is powerful for solving such problems; one formulates a prior distribution for the parameter state that is updated with the observations to compute the posterior parameter distribution. Solving for the posterior distribution can be challenging when, e.g., prior and posterior significantly differ from one another and/or the parameter space is high-dimensional. We use a sequence of importance sampling measures that arise by tempering the likelihood to approach inverse problems exhibiting a significant distance between prior and posterior. Each importance sampling measure is identified by cross-entropy minimization as proposed in the context of Bayesian inverse problems in Engel et al. (2021). To efficiently address problems with high-dimensional parameter spaces we set up the minimization procedure in a low-dimensional subspace of the original parameter space. The principal idea is to analyse the spectrum of the second-moment matrix of the gradient of the log-likelihood function to identify a suitable subspace. Following Zahm et al. (2021), an upper bound on the Kullback-Leibler-divergence between full-dimensional and subspace posterior is provided, which can be utilized to determine the effective dimension of the inverse problem corresponding to a prescribed approximation error bound. We suggest heuristic criteria for optimally selecting the number of model and model gradient evaluations in each iteration of the importance sampling sequence. We investigate the performance of this approach using examples from engineering mechanics set in various parameter space dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源