论文标题
与切换成本的匪徒,两全其美的范围更好
Better Best of Both Worlds Bounds for Bandits with Switching Costs
论文作者
论文摘要
我们研究了带有切换成本的土匪的最佳世界算法,最近由Rouyer,Seldin和Cesa-Bianchi提到,2021年。我们介绍了一种令人惊讶的简单有效的算法,同时实现了最佳的最佳遗憾,以$ \ Mathcal {O}(O}(O}(t^^2/3})) $ \ MATHCAL {O}(\ min \ {\ log(t)/δ^2,T^{2/3} \})$在随机约束的政权中,均具有(单位)切换成本,其中$δ$是$Δ$,其中$Δ$是手臂之间的差距。在随机限制的情况下,由于Rouyer等人,我们的界限比以前的结果改善了,这使$ \ Mathcal {o}(t^{1/3}/δ)$感到遗憾。我们的结果伴随着一个下限,通常表明,$ \tildeΩ(\ min \ {1/δ^2,t^{2/3} \})$遗憾在随机限制的算法中不可避免地用于算法,用于使用$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {o}(t^o}(t^^{2/2/3} $ wort)。
We study best-of-both-worlds algorithms for bandits with switching cost, recently addressed by Rouyer, Seldin and Cesa-Bianchi, 2021. We introduce a surprisingly simple and effective algorithm that simultaneously achieves minimax optimal regret bound of $\mathcal{O}(T^{2/3})$ in the oblivious adversarial setting and a bound of $\mathcal{O}(\min\{\log (T)/Δ^2,T^{2/3}\})$ in the stochastically-constrained regime, both with (unit) switching costs, where $Δ$ is the gap between the arms. In the stochastically constrained case, our bound improves over previous results due to Rouyer et al., that achieved regret of $\mathcal{O}(T^{1/3}/Δ)$. We accompany our results with a lower bound showing that, in general, $\tildeΩ(\min\{1/Δ^2,T^{2/3}\})$ regret is unavoidable in the stochastically-constrained case for algorithms with $\mathcal{O}(T^{2/3})$ worst-case regret.