论文标题
放松的高斯过程插值:一种面向目标的贝叶斯优化方法
Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
论文作者
论文摘要
这项工作提出了一个新的程序,可以在高斯工艺(GP)建模的背景下获得预测分布,并放松了感兴趣的范围之外的插值约束:预测性分布的平均值不一定会在关注范围之外的范围内插入所观察到的值,但仅仅被约束在外面。这种称为休闲高斯工艺(REGP)插值的方法在感兴趣的范围内提供了更好的预测分布,尤其是在GP模型不合适的平稳性假设的情况下。它可以被视为一种面向目标的方法,在贝叶斯优化中变得特别有趣,例如,对于目标函数的最小化,低功能值的良好预测分布很重要。当将预期的改进标准和REGP用于依次选择评估点时,从理论上保证了所得优化算法的收敛性(前提是要优化的函数在于复制的内核Hilbert空间,该空间附加到基础豪斯基础过程的已知协方差)。实验表明,在贝叶斯优化中使用REGP代替固定的GP模型是有益的。
This work presents a new procedure for obtaining predictive distributions in the context of Gaussian process (GP) modeling, with a relaxation of the interpolation constraints outside ranges of interest: the mean of the predictive distributions no longer necessarily interpolates the observed values when they are outside ranges of interest, but are simply constrained to remain outside. This method called relaxed Gaussian process (reGP) interpolation provides better predictive distributions in ranges of interest, especially in cases where a stationarity assumption for the GP model is not appropriate. It can be viewed as a goal-oriented method and becomes particularly interesting in Bayesian optimization, for example, for the minimization of an objective function, where good predictive distributions for low function values are important. When the expected improvement criterion and reGP are used for sequentially choosing evaluation points, the convergence of the resulting optimization algorithm is theoretically guaranteed (provided that the function to be optimized lies in the reproducing kernel Hilbert space attached to the known covariance of the underlying Gaussian process). Experiments indicate that using reGP instead of stationary GP models in Bayesian optimization is beneficial.