论文标题
粘性液体动力学的玩具模型
A toy model for viscous liquid dynamics
论文作者
论文摘要
引入了一个简单的粘性液体动力学模型。考虑具有周期性边界条件的高立方体内部以随机位置为中心的超球体结合的表面。数值模拟证明并证明了该表面上的大量流量是粘性液体动力学的良好模型。结果表明,这种简单的模型表现出高于渗透阈值$ 8 $,$ 12 $和$ 16 $尺寸的密度的粘性动力学。因此,通过均方位移测量的动力学的减慢速度延伸到几个数量级,与其他模型中的粘性动力学相似。此外,于点位移的形状是与粘性液体模拟中的标准模型相同的近似值:Kob-Andersen Binary Lennard Jones混合物。
A simple model for viscous liquid dynamics is introduced. Consider the surface of the union of hyper-spheres centered at random positions inside a hypercube with periodic boundary conditions. It is argued and demonstrated by numerical simulations that at high dimensions geodetic flows on this surface is a good model for viscous liquid dynamics. It is shown that this simple model exhibits viscous dynamics for densities above the percolation threshold in $8$, $12$ and $16$ dimensions. Thus the slowing down of the dynamics, measured by the mean-squared displacement, extends to several orders of magnitude similarly to what is observed in other models for viscous dynamics. Furthermore, the shape of the mean-squared displacement is to a very good approximation the same as for the standard model in simulations of viscous liquids: the Kob-Andersen binary Lennard Jones mixture.