论文标题
部分可观测时空混沌系统的无模型预测
On a framework of data assimilation for neuronal networks
论文作者
论文摘要
当处理由复杂网络动力学系统建模的现实世界数据时,参数的数量始终远远超过数据的大小。因此,在许多情况下,不可能估计这些参数,但是,每个参数的确切值通常比参数的分布不那么有趣,可能包含重要信息以了解系统和数据。在本文中,我们提出了通过采用数据同化方法来估计从实验数据(例如,血液氧依赖性依赖性(BOLD)信号)中估算参数分布(LIF)神经元网络模型的分布。本文中,我们假设神经元和突触的参数是不均匀的,但在某些分布和未知的超参数分布之后是独立的,但分布不明。因此,我们估计参数分布的这些超参数,而不是估计参数本身。我们在数据同化和分层贝叶斯方法的框架下提出了这个问题,并提出了一种名为层次数据同化(HDA)的有效方法,以对神经元网络模型进行统计推断,并使用由血液动力学模型模拟的粗体信号数据进行统计推断。我们考虑了具有四个突触的LIF神经元网络,并表明所提出的算法可以很好地估算大胆的信号和高参数的精确性。此外,我们讨论了对算法配置和LIF网络模型设置的性能的影响。
When handling real-world data modeled by a complex network dynamical system, the number of the parameters is always even much more than the size of the data. Therefore, in many cases, it is impossible to estimate these parameters and however, the exact value of each parameter is frequently less interesting than the distribution of the parameters may contain important information towards understanding the system and data. In this paper, we propose this question arising by employing a data assimilation approach to estimate the distribution of the parameters in the leakage-integrate-fire (LIF) neuronal network model from the experimental data, for example, the blood-oxygen-level-dependent (BOLD) signal. Herein, we assume that the parameters of the neurons and synapses are inhomogeneous but independently identical distributed following certain distribution with unknown hyperparameters. Thus, we estimate these hyperparameters of the distributions of the parameters, instead of estimating the parameters themselves. We formulate this problem under the framework of data assimilation and hierarchical Bayesian method, and present an efficient method named Hierarchical Data Assimilation (HDA) to conduct the statistical inference on the neuronal network model with the BOLD signal data simulated by the hemodynamic model. We consider the LIF neuronal networks with four synapses and show that the proposed algorithm can estimate the BOLD signals and the hyperparameters with good preciseness. In addition, we discuss the influence on the performance of the algorithm configuration and the LIF network model setup.