论文标题
GLF-CR:全局融合的SAR增强云去除
GLF-CR: SAR-Enhanced Cloud Removal with Global-Local Fusion
论文作者
论文摘要
可以借助可以穿透云盖的合成孔径雷达(SAR)图像来缓解云去除任务的挑战。但是,光学图像和SAR图像之间的较大域间隙以及SAR图像的严重斑点噪声可能会严重干扰基于SAR的云的去除,从而导致性能退化。在本文中,我们提出了一种新型的基于全部本地融合的云去除(GLF-CR)算法,以利用SAR图像中嵌入的互补信息。利用SAR信息的力量促进云消除需要两个方面。首先,全球融合指导所有本地光学窗口之间的关系,以维持与剩余无云区域一致的回收区域的结构。第二个本地融合,传输嵌入在SAR图像中的互补信息,该信息与多云区域相对应,以生成缺失区域的可靠纹理细节,并使用动态过滤来减轻斑点噪声引起的性能退化。广泛的评估表明,所提出的算法可以产生高质量的无云图像,并且在SEN12MS-CR数据集中的PSNR方面,以大约1.7db的增长算出最先进的云去除算法。
The challenge of the cloud removal task can be alleviated with the aid of Synthetic Aperture Radar (SAR) images that can penetrate cloud cover. However, the large domain gap between optical and SAR images as well as the severe speckle noise of SAR images may cause significant interference in SAR-based cloud removal, resulting in performance degeneration. In this paper, we propose a novel global-local fusion based cloud removal (GLF-CR) algorithm to leverage the complementary information embedded in SAR images. Exploiting the power of SAR information to promote cloud removal entails two aspects. The first, global fusion, guides the relationship among all local optical windows to maintain the structure of the recovered region consistent with the remaining cloud-free regions. The second, local fusion, transfers complementary information embedded in the SAR image that corresponds to cloudy areas to generate reliable texture details of the missing regions, and uses dynamic filtering to alleviate the performance degradation caused by speckle noise. Extensive evaluation demonstrates that the proposed algorithm can yield high quality cloud-free images and outperform state-of-the-art cloud removal algorithms with a gain about 1.7dB in terms of PSNR on SEN12MS-CR dataset.