论文标题
环上无子源外部因素
Subinner-free outer factorizations on an annulus
论文作者
论文摘要
Aleman,Hartz,McCarthy和Richter的最新工作将Hardy空间功能的经典内部分解概括为完整的挑选空间设置,从而建立了基本独特的“无子源外部”分解。在本说明中,我们通过完整的选择内核$$ $$ k_ {r}(λ,μ):= = = \ frac {1-r^2} {1-r^2} {1-1- $ bar的(1-1-2}(1-2}(1-2/见)
Recent work of Aleman, Hartz, McCarthy and Richter generalizes the classical inner-outer factorization of Hardy space functions to the complete Pick space setting, establishing an essentially unique "subinner-free outer" factorization. In this note, we investigate certain special examples of such factorizations in the setting of the function space induced on the annulus $A_r=\{r<|z|<1\}$ by the complete Pick kernel $$k_{r}(λ,μ):=\frac{1-r^2}{(1-λ\barμ)(1-r^2/λ\barμ)}.$$