论文标题
一个模型,用于预测昼夜可变环境中复杂燃料的点火电位
A Model for Predicting Ignition Potential of Complex Fuel in Diurnally Variable Environment
论文作者
论文摘要
燃料点火电位是影响野外和野生世界界面火灾损害程度的主要驱动因素之一。确定在空间和时间上改变燃料的火灾和灰烬暴露,将有助于认识到必要的防御行动并减少损失。在本文中,提出了新的计算模型,开放环境中复杂燃料(Tamefoe)中的温度和水分演化预测变量的开发。 Tamefoe预测了昼夜温度和水分含量的演变以及在可变环境条件下具有复杂形状或设置和材料的物体/燃料的火焰点火的脆弱性。该模型适用于在当地天气和昼夜太阳辐射的影响下,在开放大气中由天然和人造的随机物体组成的复杂燃料场景(例如界面或界面社区)。燃料对灰烬或火火点火的脆弱性是通过预测与周围,当地环境和火焰热的燃料的短暂温度和干燥性来确定的。在这方面,以高时空分辨率进行了详细的表面能量平衡分析,再加上水预算分析。对于几个现有的分析和测量数据,对模型性能进行了验证。当需要耦合物理学时,从模型获得的离散,高分辨率的表面温度和水分含量信息也可以为计算流体动力学模拟提供不稳定的边界条件。
Fuel ignition potential is one of the primary drivers influencing the extent of damage in wildland and wildland-urban interface fires. Determining fire and ember exposure of fuels that vary spatially and temporally will help to recognize necessary defensive actions and reduce damages. In this paper, the development of a new computational model, Temperature And Moisture Evolution predictor for complex Fuel in Open Environment (TAMEFOE), is presented. TAMEFOE predicts the diurnal temperature and moisture content evolution and vulnerability to flame ignition of objects/fuels with complex shapes or settings and materials under variable environmental conditions. The model is applicable to complex fuel scenarios (e.g., interface or intermix communities) composed of natural and manmade random-shaped objects in open atmosphere under the influence of local weather and diurnal solar radiation. The vulnerability of fuel to ember or fire ignition is determined by predicting the transient temperature and dryness of fuel in connection with the surrounding, local environment, and flame heat if any exists. In this regard, a detailed surface energy balance analysis, coupled with a water budget analysis, is performed in high spatiotemporal resolution. The model performance was validated against several existing analytical and measured data. The discrete, high-resolution surface temperature and moisture content information obtained from the model can also provide unsteady boundary conditions for computational fluid dynamics simulations when coupled physics is desired.