论文标题
$ | v _ {\ rm cb}的新确定使用$ b \ to d^{\ ast} $ semi-leptonic衰减的三环QCD校正
New determination of $|V_{\rm cb}|$ using the three-loop QCD corrections for the $B\to D^{\ast}$ semi-leptonic decays
论文作者
论文摘要
我们通过使用$ b \ to d^{\ ast} $ Sem-Leptonic decay的三环扰动QCD校正来提出cabibbo-kobayashi-maskawa矩阵元素$ | v _ {\ rm cb} | $的新确定。 $ b \ to d^{\ ast} $ sem-leptonic衰减的衰减宽度可以作为扰动可计算的短途部分和非扰动但通用的长距离部分分解。我们采用最大保密性(PMC)单尺度设置方法的原理来处理扰动系列,以实现短距参数$η_{a} $的精确固定订单预测。通过应用PMC,通过递归使用重新归一化组方程来实现总体有效的$α_s$值,该方程将成反比确切的规模不变的PQCD系列。这种规模不变系列还为预测未算力扰动项的贡献提供了可靠的基础。然后,我们获得$η_{a} = 0.9225^{+0.0117} _ { - 0.0168} $,其中错误是$δα_{s}(m_z)= \ pm0.0010 $的平均值,而不真实的是由不计算的更高差异造成的。通过使用$ b \ of d^{\ ast} \ ell \barν_ {\ ell} $的数据,我们最终获得$ | v _ {\ rm cb} | _ {\ rm pmc} =(40.60^{+0.53} _ {+0.53} _ { - 0.53} _ {-0.53} _ { - 0.57} $ 33在错误中。
We present a new determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{\rm cb}|$ by using the three-loop perturbative QCD corrections for the $B\to D^{\ast}$ semi-leptonic decay. The decay width of $B\to D^{\ast}$ semi-leptonic decay can be factorized as perturbatively calculable short-distance part and the non-perturbative but universal long-distance part. We adopt the principle of maximum conformality (PMC) single-scale setting approach to deal with the perturbative series so as to achieve a precise fixed-order prediction for the short-distance parameter $η_{A}$. By applying the PMC, an overall effective $α_s$ value is achieved by recursively using the renormalization group equation, which inversely results in a precise scale-invariant pQCD series. Such scale-invariant series also provides a reliable basis for predicting the contributions from uncalculated perturbative terms. We then obtain $η_{A}=0.9225^{+0.0117}_{-0.0168}$, where the error is the squared average of those from $Δα_{s}(M_Z)=\pm0.0010$ and the uncertainties caused by the uncalculated higher-order perturbative terms. By using the data of $B\to D^{\ast}\ell\barν_{\ell}$, we finally obtain $|V_{\rm cb}|_{\rm PMC} =(40.60^{+0.53}_{-0.57})\times10^{-3}$, which is consistent with the PDG value within errors.