论文标题
BehavePassDB:移动行为生物识别技术和基准评估的公共数据库
BehavePassDB: Public Database for Mobile Behavioral Biometrics and Benchmark Evaluation
论文作者
论文摘要
移动行为生物识别技术已成为研究的流行话题,在身份验证方面取得了令人鼓舞的结果,利用了触摸屏和背景传感器数据的多模式组合。但是,无法知道文献中最新的分类器是否可以区分用户和设备的概念。在本文中,我们介绍了一个新的数据库,即Beh therPassDB,构成单独的采集会议和任务,以模仿移动人类计算机互动(HCI)的最常见方面。 BehavePassDB是通过安装在受试者设备上的专用移动应用程序获得的,还包括同一设备上不同用户的情况进行评估。我们为研究界提出了标准的实验协议和基准测试,以对新方法与最新技术进行公平的比较。我们建议并评估一个基于长期任期内存(LSTM)体系结构的系统,并在得分水平下具有三重态损失和模态融合。
Mobile behavioral biometrics have become a popular topic of research, reaching promising results in terms of authentication, exploiting a multimodal combination of touchscreen and background sensor data. However, there is no way of knowing whether state-of-the-art classifiers in the literature can distinguish between the notion of user and device. In this article, we present a new database, BehavePassDB, structured into separate acquisition sessions and tasks to mimic the most common aspects of mobile Human-Computer Interaction (HCI). BehavePassDB is acquired through a dedicated mobile app installed on the subjects' devices, also including the case of different users on the same device for evaluation. We propose a standard experimental protocol and benchmark for the research community to perform a fair comparison of novel approaches with the state of the art. We propose and evaluate a system based on Long-Short Term Memory (LSTM) architecture with triplet loss and modality fusion at score level.