论文标题
在平面上的导电性盘式内的随机各向同性系统中不变的渗透特性:从磁盘到棍子
Invariant percolation properties in random isotropic systems of conductive discorectangles on a plane: From disks to sticks
论文作者
论文摘要
最近,已经报道了随机,各向同性,二维(2D)导电椭圆体系的某些偏心率不变特性[Phys。 Rev. B \ B \ Bf {104},184205(2021)]。此外,作者建议在其他粒子几何形状具有零宽度棒作为极限情况下的系统中也可以观察到这种不变性。为了检查这一建议,我们研究了各向同性,重叠,相同的圆锥形(Stadia)的2D随机系统,其长宽比范围从1(磁盘)到$ \ ysfty $(零宽度棒)。我们分析了纵横比的影响以及导电性盘状的数量密度对电导率,局部电导率指数和电流载体骨架的行为的影响。我们自己的计算机模拟表明,导电圆锥形的随机,各向同性2D系统的某些属性对颗粒的长宽比不敏感。
Recently, some eccentricity-invariant properties of random, isotropic, two-dimensional (2D) systems of conductive ellipses have been reported [Phys. Rev. B \bf{104}, 184205 (2021)]. Moreover, the authors suggested that this invariance might also be observed in systems with other particle geometries having zero-width sticks as the limiting case. To check this suggestion, we studied 2D random systems of isotropically-placed, overlapping, identical discorectangles (stadia) with aspect ratios ranging from 1 (disks) to $\infty$ (zero-width sticks). We analyzed the effect of the aspect ratio and the number density of conductive discorectangles on the behavior of the electrical conductivity, the local conductivity exponent, and the current-carrying backbone. Our own computer simulations demonstrate that some of the properties of random, isotropic 2D systems of conductive discorectangles are insensitive to the aspect ratios of the particles.