论文标题

量子神经网络中的纠缠熵产生

Entanglement entropy production in Quantum Neural Networks

论文作者

Ballarin, Marco, Mangini, Stefano, Montangero, Simone, Macchiavello, Chiara, Mengoni, Riccardo

论文摘要

量子神经网络(QNN)被认为是在嘈杂的中级量表量子计算机(NISQ)时代实现量子优势的候选者。已经提出了几种QNN架构,并在基准数据集上成功测试了机器学习。然而,对QNN生成的纠缠的定量研究仅研究了多达几吨。张量网络方法允许在各种情况下模仿大量Qubit的量子电路。在这里,我们采用矩阵产品状态来表征最近研究的QNN体系结构,其随机参数最多五十个量子位,表明它们的纠缠以量子粒之间的纠缠熵来衡量,倾向于HAAR分布式随机状态,因为随着QNN的深度的增加。我们还通过测量电路的表达性以及使用随机矩阵理论的工具来证明量子状态的随机性。我们展示了在任何给定的QNN体系结构中创建纠缠的速率的普遍行为,因此引入了一种新的措施来表征QNNS中的纠缠生产:纠缠速度。我们的结果表征了量子神经网络的纠缠特性,并提供了这些近似随机单位的速率的新证据。

Quantum Neural Networks (QNN) are considered a candidate for achieving quantum advantage in the Noisy Intermediate Scale Quantum computer (NISQ) era. Several QNN architectures have been proposed and successfully tested on benchmark datasets for machine learning. However, quantitative studies of the QNN-generated entanglement have been investigated only for up to few qubits. Tensor network methods allow to emulate quantum circuits with a large number of qubits in a wide variety of scenarios. Here, we employ matrix product states to characterize recently studied QNN architectures with random parameters up to fifty qubits showing that their entanglement, measured in terms of entanglement entropy between qubits, tends to that of Haar distributed random states as the depth of the QNN is increased. We certify the randomness of the quantum states also by measuring the expressibility of the circuits, as well as using tools from random matrix theory. We show a universal behavior for the rate at which entanglement is created in any given QNN architecture, and consequently introduce a new measure to characterize the entanglement production in QNNs: the entangling speed. Our results characterise the entanglement properties of quantum neural networks, and provides new evidence of the rate at which these approximate random unitaries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源