论文标题
神经启发的测量可观察性
Neural-inspired Measurement Observability
论文作者
论文摘要
通过飞行昆虫的生物传感器编码的神经编码,这些神经传感器在以电压尖峰的形式将其发送到中枢神经系统之前刺激数据,使得能够具有计算性低成本的传感能力,同时也对噪声非常强大。该过程可以建模为线性移动平均过滤器和非线性决策功能的组成,从而启发了此处报告的工作,以通过最大程度地提高特定神经启发的复合测量功能的可观察力来提高工程感应性能。我们首先提出一种工具,以确定具有测量延迟的线性系统的可观察性(组成的第一个元素),然后使用Lie代数可观察方法研究具有输出延迟的非线性自主系统(组合物的第二个元素)。然后扩展谎言代数工具,以解决具有复合输出的系统的整体可观察性,如我们采用的神经编码器模型中。使用经验可观察性格拉amian支持分析结果,并在生物启发的机翼模型上使用最佳的传感器放置,使用基于经验格拉米亚语的指标进行。
The neural encoding by biological sensors of flying insects, which prefilters stimulus data before sending it to the central nervous system in the form of voltage spikes, enables sensing capabilities that are computationally low-cost while also being highly robust to noise. This process, which can be modeled as the composition of a linear moving average filter and a nonlinear decision function, inspired the work reported here to improve engineered sensing performance by maximizing the observability of particular neural-inspired composite measurement functions. We first present a tool to determine the observability of a linear system with measurement delay (the first element of the composition), then use a Lie algebraic observability approach to study nonlinear autonomous systems with output delay (the second element of the composition). The Lie algebraic tools are then extended to address overall observability of systems with composite outputs as in the neural encoder model we adopt. The analytical outcomes are supported using the empirical observability Gramian, and optimal sensor placement on a bioinspired wing model is performed using metrics based on the empirical Gramian.