论文标题
超分辨率的多色荧光显微镜通过具有延长的焦点焦点镜头来实现
Super-resolution multicolor fluorescence microscopy enabled by an apochromatic super-oscillatory lens with extended depth-of-focus
论文作者
论文摘要
对于远场和近场的超分辨率技术,多色超分辨率成像仍然是一个棘手的挑战。平面超振荡镜头(SOL)是一种远场亚波长的衍射透镜装置,具有在多个波长下实现亚分形式限制成像的巨大潜力。但是,常规的SOL设备遭受了数值孔径(NA)相关的固有折衷(DOF),色散和焦点斑点大小,是常见衍射光学元素的重要特征。通常,尽管增加了NA的促进,但与高Na相关的有限DOF和显着的染色体可能导致图像质量的不利降解。在这里,我们采用多目标遗传算法(GA)优化方法来设计一种倍率的二元相验溶胶,该替代性二进制型溶胶同时生成轴向的二进制型型溶胶,同时具有延长的DOF,定制的工作距离(WD)和抑制的侧型齿轮却却最小化的主叶大小,从而优化了上述NA依赖性依赖性。该GA优化溶胶的实验实现表明,蓝色,绿色和红光光束同时聚焦在428 UM WD时直径的光学针中的一半,从而使横向尺寸中入射波长的最终分辨率更好。通过将此播型SOL设备与商业荧光显微镜整合在一起,我们使用光针首次执行了对神经元未看到的精细结构的三维超分辨率多色多色荧光成像。本研究不仅提供了远场多色超分辨率成像的实用途径,而且还提供了一种可行的方法,用于构建成像系统,以避免复杂的样品定位和不利的光漂白。
Multicolor super-resolution imaging remains an intractable challenge for both far-field and near-field based super-resolution techniques. Planar super-oscillatory lens (SOL), a far-field subwavelength-focusing diffractive lens device, holds great potential for achieving sub-diffraction-limit imaging at multiple wavelengths. However, conventional SOL devices suffer from a numerical aperture (NA) related intrinsic tradeoff among the depth of focus (DoF), chromatic dispersion and focus spot size, being an essential characteristics of common diffractive optical elements. Typically, the limited DoF and significant chromatism associated with high NA can lead to unfavorable degradation of image quality although increasing NA imporves the resolution. Here, we apply a multi-objective genetic algorithm (GA) optimization approach to design an apochromatic binary-phase SOL that generates axially jointed multifoci concurrently having prolonged DoF, customized working distance (WD) and suppressed side-lobes yet minimized main-lobe size, optimizing the aforementioned NA-dependent tradeoff. Experimental implementation of this GA-optimized SOL demonstrates simultaneous focusing of blue, green and red light beams into an optical needle half of the incident wavelength in diameter at 428 um WD, resulting in an ultimate resolution better than one third of the incident wavelength in the lateral dimension. By integrating this apochromatic SOL device with a commercial fluorescence microscope, we employ the optical needle to perform, for the first time, three-dimensional super-resolution multicolor fluorescence imaging of the unseen fine structure of neurons at one go. The present study provides not only a practical route to far-field multicolor super-resolution imaging but also a viable approach for constructing imaging systems avoiding complex sample positioning and unfavorable photobleaching.