论文标题
耐硬的量子pigeonhole悖论的实验实现
Experimental implementation of Hardy-like quantum pigeonhole paradoxes
论文作者
论文摘要
我们介绍了\ textit {n} - 粒子状态的一般性耐硬质量子孔悖论,发现每个此类悖论都可以简单地与预测颜色图所引起的特定顶点颜色问题的不可分化的解决方案相关联(一种非常规图)。此外,作为一种特殊的狂热悖论,比以前的强壮的悖论相比,几种类似耐硬的量子的量子悖论甚至会带来更高的成功概率,以证明量子力学与局部或非上下文现实主义之间的冲突。此外,不仅多量状态,而且高维状态都可以表现出悖论。与原始量子鸽洞悖论中仅提出的一种矛盾相反,在我们的工作中讨论了两种三Q Q Quibit的投影图状态,并且在我们的工作中讨论了最小的例证,并进行了光学实验来验证这种更强的悖论。该量子悖论在探索新型强大的多方量子非局部性方面提供了创新的思想和方法,并且可能在多方不信任的通信和独立于设备的随机数生成中具有潜在的应用。
We present the general Hardy-like quantum pigeonhole paradoxes for \textit{n}-particle states, and find that each of such paradoxes can be simply associated to an un-colorable solution of a specific vertex-coloring problem induced from the projected-coloring graph (a kind of unconventional graph). Besides, as a special kind of Hardy's paradox, several kinds of Hardy-like quantum pigeonhole paradoxes can even give rise to higher success probability in demonstrating the conflict between quantum mechanics and local or noncontextual realism than the previous Hardy's paradoxes. Moreover, not only multi-qubit states, but high-dimensional states can exhibit the paradoxes. In contrast to only one type of contradiction presented in the original quantum pigeonhole paradox, two kinds of three-qubit projected-coloring graph states as the minimal illustration are discussed in our work, and an optical experiment to verify such stronger paradox is performed. This quantum paradox provides innovative thoughts and methods in exploring new types of stronger multi-party quantum nonlocality and may have potential applications in multi-party untrusted communications and device-independent random number generation.