论文标题

ID-不合时宜的用户行为预训练以进行顺序推荐

ID-Agnostic User Behavior Pre-training for Sequential Recommendation

论文作者

Mu, Shanlei, Hou, Yupeng, Zhao, Wayne Xin, Li, Yaliang, Ding, Bolin

论文摘要

最近,顺序推荐已成为一个广泛研究的主题。现有研究主要设计有效的神经体系结构,以基于项目ID对用户行为序列进行建模。但是,这种方法高度依赖于用户项目的交互数据,并忽略了用户首选的类似项目之间的属性或特征级相关性。鉴于这些问题,我们提出了IDA-SR,它代表ID-不合稳定的用户行为预训练方法进行顺序建议。 IDA-SR不是明确学习项目ID的表示表示,而是直接从丰富的文本信息中学习项目表示形式。为了弥合文本语义和顺序用户行为之间的差距,我们利用预训练的语言模型作为文本编码器,并在顺序用户行为上进行预训练的架构。这样,可以将项目文本直接用于顺序推荐而无需依赖项目ID。广泛的实验表明,只有使用ID-不合稳定的项目表示时,提出的方法可以实现可比的结果,并且在对ID信息进行微调时,其性能优于基础线。

Recently, sequential recommendation has emerged as a widely studied topic. Existing researches mainly design effective neural architectures to model user behavior sequences based on item IDs. However, this kind of approach highly relies on user-item interaction data and neglects the attribute- or characteristic-level correlations among similar items preferred by a user. In light of these issues, we propose IDA-SR, which stands for ID-Agnostic User Behavior Pre-training approach for Sequential Recommendation. Instead of explicitly learning representations for item IDs, IDA-SR directly learns item representations from rich text information. To bridge the gap between text semantics and sequential user behaviors, we utilize the pre-trained language model as text encoder, and conduct a pre-training architecture on the sequential user behaviors. In this way, item text can be directly utilized for sequential recommendation without relying on item IDs. Extensive experiments show that the proposed approach can achieve comparable results when only using ID-agnostic item representations, and performs better than baselines by a large margin when fine-tuned with ID information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源