论文标题

ACT:半监督域自适应的医学图像分割与非对称共同训练

ACT: Semi-supervised Domain-adaptive Medical Image Segmentation with Asymmetric Co-training

论文作者

Liu, Xiaofeng, Xing, Fangxu, Shusharina, Nadya, Lim, Ruth, Kuo, C-C Jay, Fakhri, Georges El, Woo, Jonghye

论文摘要

通过在未标记的目标域中应用良好的模型,通过对标记的源域的监督应用了良好的模型,已通过对未标记的目标域应用了良好的模型,对无监督的域适应(UDA)进行了大量探索,以减轻源和目标域之间的域变化。然而,最近的文献表明,在存在明显的领域变化的情况下,性能仍然远非令人满意。尽管如此,由于绩效的实质增长,划定一些目标样本通常是易于管理的,尤其是值得的。受此启发的启发,我们旨在开发半监督域的适应性(SSDA)进行医学图像分割,这在很大程度上没有被逐渐倍增。因此,除了以统一的方式使用未标记的目标数据外,我们建议利用标记的源和目标域数据。具体而言,我们提出了一种新型的不对称共同训练(ACT)框架,以整合这些子集并避免源域数据的统治。遵循分裂和纠纷策略,我们将SSDA的标签监督分为两个不对称的子任务,包括半监督学习(SSL)和UDA,并利用来自两个段的不同知识来考虑源标签和目标标签监督的区别。然后,在两个模块中所学的知识与ACT自适应地整合,通过基于置信度的伪标签进行迭代教学。此外,伪标签噪声通过指数混合衰减方案很好地控制,以进行平滑传播。使用BRATS18数据库进行跨模式脑肿瘤MRI分割任务的实验表明,即使标记的目标样本有限,ACT也对UDA和最先进的SSDA方法产生了明显的改进,并接近了受监督联合培训的“上限”。

Unsupervised domain adaptation (UDA) has been vastly explored to alleviate domain shifts between source and target domains, by applying a well-performed model in an unlabeled target domain via supervision of a labeled source domain. Recent literature, however, has indicated that the performance is still far from satisfactory in the presence of significant domain shifts. Nonetheless, delineating a few target samples is usually manageable and particularly worthwhile, due to the substantial performance gain. Inspired by this, we aim to develop semi-supervised domain adaptation (SSDA) for medical image segmentation, which is largely underexplored. We, thus, propose to exploit both labeled source and target domain data, in addition to unlabeled target data in a unified manner. Specifically, we present a novel asymmetric co-training (ACT) framework to integrate these subsets and avoid the domination of the source domain data. Following a divide-and-conquer strategy, we explicitly decouple the label supervisions in SSDA into two asymmetric sub-tasks, including semi-supervised learning (SSL) and UDA, and leverage different knowledge from two segmentors to take into account the distinction between the source and target label supervisions. The knowledge learned in the two modules is then adaptively integrated with ACT, by iteratively teaching each other, based on the confidence-aware pseudo-label. In addition, pseudo label noise is well-controlled with an exponential MixUp decay scheme for smooth propagation. Experiments on cross-modality brain tumor MRI segmentation tasks using the BraTS18 database showed, even with limited labeled target samples, ACT yielded marked improvements over UDA and state-of-the-art SSDA methods and approached an "upper bound" of supervised joint training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源