论文标题

扩散术:扩散的训练剂

Diffusion-GAN: Training GANs with Diffusion

论文作者

Wang, Zhendong, Zheng, Huangjie, He, Pengcheng, Chen, Weizhu, Zhou, Mingyuan

论文摘要

生成的对抗网络(GAN)稳定地训练的挑战性,并且将实例噪声注入歧视者输入的有前途的补救措施在实践中并不是很有效。在本文中,我们提出了扩散gan,这是一种新型的GAN框架,该框架利用向前扩散链生成高斯混合分布式实例噪声。扩散 - gan由三个组成部分组成,包括自适应扩散过程,一个扩散时间段依赖性鉴别器和一个生成器。观察到的数据和生成的数据均通过相同的自适应扩散过程扩散。在每个扩散时间步中,存在不同的噪声与数据比,而依赖时间段的歧视器则学会区分扩散的真实数据与扩散的生成数据。发电机通过向前扩散链进行反向传播从歧视者的反馈中学习,该链的长度经过适应性调整以平衡噪声和数据水平。从理论上讲,我们表明歧视者的时间段依赖性策略为生成器提供了一致且有用的指导,从而使其能够匹配真实的数据分布。我们证明了扩散gan比各种数据集上强GAN基准的优势,这表明它可以产生比最先进的gan产生更逼真的图像,具有更高的稳定性和数据效率。

Generative adversarial networks (GANs) are challenging to train stably, and a promising remedy of injecting instance noise into the discriminator input has not been very effective in practice. In this paper, we propose Diffusion-GAN, a novel GAN framework that leverages a forward diffusion chain to generate Gaussian-mixture distributed instance noise. Diffusion-GAN consists of three components, including an adaptive diffusion process, a diffusion timestep-dependent discriminator, and a generator. Both the observed and generated data are diffused by the same adaptive diffusion process. At each diffusion timestep, there is a different noise-to-data ratio and the timestep-dependent discriminator learns to distinguish the diffused real data from the diffused generated data. The generator learns from the discriminator's feedback by backpropagating through the forward diffusion chain, whose length is adaptively adjusted to balance the noise and data levels. We theoretically show that the discriminator's timestep-dependent strategy gives consistent and helpful guidance to the generator, enabling it to match the true data distribution. We demonstrate the advantages of Diffusion-GAN over strong GAN baselines on various datasets, showing that it can produce more realistic images with higher stability and data efficiency than state-of-the-art GANs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源