论文标题
频域的统计推断高维时间序列
Frequency Domain Statistical Inference for High-Dimensional Time Series
论文作者
论文摘要
分析频域中的时间序列可以开发强大的工具来研究多元过程的二阶特征。诸如光谱密度矩阵及其逆的参数,相干性或部分相干性,全面编码多元系统组件过程之间的复杂线性关系。在本文中,我们在高维,时间序列设置中为此类参数开发了推理过程。为了实现这一目标,我们首先关注的是连贯性的一致估计器的推导,更重要的是,部分连贯性具有可管理的限制分布,适合于测试目的。统计检验的统计检验是,部分相干性分别超出相干性的最大值,不超过预先指定的阈值。我们的方法允许对单个相干和/或部分相干的假设以及对大量此类参数进行多次测试。在后一种情况下,开发了控制错误发现率的一致程序。提出了基于脑电图数据的大脑连通性的构建图形相互作用模型,研究了引入的推理程序的有限样本性能。
Analyzing time series in the frequency domain enables the development of powerful tools for investigating the second-order characteristics of multivariate processes. Parameters like the spectral density matrix and its inverse, the coherence or the partial coherence, encode comprehensively the complex linear relations between the component processes of the multivariate system. In this paper, we develop inference procedures for such parameters in a high-dimensional, time series setup. Towards this goal, we first focus on the derivation of consistent estimators of the coherence and, more importantly, of the partial coherence which possess manageable limiting distributions that are suitable for testing purposes. Statistical tests of the hypothesis that the maximum over frequencies of the coherence, respectively, of the partial coherence, do not exceed a prespecified threshold value are developed. Our approach allows for testing hypotheses for individual coherences and/or partial coherences as well as for multiple testing of large sets of such parameters. In the latter case, a consistent procedure to control the false discovery rate is developed. The finite sample performance of the inference procedures introduced is investigated by means of simulations and applications to the construction of graphical interaction models for brain connectivity based on EEG data are presented.