论文标题

部分可观测时空混沌系统的无模型预测

On weak associated reflexivity of weighted Sobolev spaces of the first order on real line

论文作者

Stepanov, V. D., Ushakova, E. P.

论文摘要

我们研究了实际半线的第一阶的两加权Sobolev空间的辅助和双重助理空间,我们表明,与二元性概念不同,关联性分为两种情况,我们称我们称之为“强”和“弱”,第二个关联分为四种情况。在途中,我们证明,紧凑型功能的Sobolev空间具有弱相关的反射性,而双重弱的联想空间是空置的。最近的功率权重的情况是减少到CESàRO或COPSON类型的空间[18]。

We study associate and double associate spaces of two-weighted Sobolev spaces of the first order on real half-line and we show that unlike the notion of duality the associativity is divided into two cases which we call "strong" and "weak" ones with the division of the second associativity into four cases. On the way we prove that the Sobolev space of compactly supported functions possess weak associated reflexivity and the double weak-strong associate space is vacuous. The case of power weights was recently characterized by reduction to Cesàro or Copson type spaces [18].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源