论文标题

部分可观测时空混沌系统的无模型预测

Near-Term Advances in Quantum Natural Language Processing

论文作者

Widdows, Dominic, Alexander, Aaranya, Zhu, Daiwei, Zimmerman, Chase, Majumder, Arunava

论文摘要

本文描述了实验表明,自然语言处理中的某些任务(NLP)可以使用量子计算机执行,尽管到目前为止仅使用小型数据集执行。 我们演示了主题分类的各种方法。第一个使用明确的基于单词的方法,其中将单词主题评分权重作为单个量子的分数旋转实现,并根据这些权重的积累在得分Qubit中使用纠缠受控的不可以的门来对新短语进行分类。将其与单词嵌入向量的更可扩展的量子编码进行了比较,该载体用于计算量子支持向量机中的内核值:这种方法在涉及10000多个单词的分类任务上平均达到62%的精度,这是迄今为止最大的此类量子计算实验。 我们描述了一种用于Bigram建模的量子概率方法,该方法可以应用于单词和形式概念的序列,使用量子电路出生的机器研究对这些分布的生成近似,以及一种使用单个Qubit旋转的动词 - 单词组成中的模棱两可的方法,用于简单名词和2 qubit控制的名词和2 Qubit控制的not not gates。 所描述的较小系统已在物理量子计算机上成功运行,并且已经模拟了较大的系统。我们表明,使用真实数据集可以获得统计学上有意义的结果,但是与以前在开发量子NLP系统中使用的更容易的人工语言示例相比,这要难以预测得多。 比较了量子NLP的其他方法,部分是关于当代问题,包括非正式语言,流利性和真实性。

This paper describes experiments showing that some tasks in natural language processing (NLP) can already be performed using quantum computers, though so far only with small datasets. We demonstrate various approaches to topic classification. The first uses an explicit word-based approach, in which word-topic scoring weights are implemented as fractional rotations of individual qubit, and a new phrase is classified based on the accumulation of these weights in a scoring qubit using entangling controlled-NOT gates. This is compared with more scalable quantum encodings of word embedding vectors, which are used in the computation of kernel values in a quantum support vector machine: this approach achieved an average of 62% accuracy on classification tasks involving over 10000 words, which is the largest such quantum computing experiment to date. We describe a quantum probability approach to bigram modeling that can be applied to sequences of words and formal concepts, investigating a generative approximation to these distributions using a quantum circuit Born machine, and an approach to ambiguity resolution in verb-noun composition using single-qubit rotations for simple nouns and 2-qubit controlled-NOT gates for simple verbs. The smaller systems described have been run successfully on physical quantum computers, and the larger ones have been simulated. We show that statistically meaningful results can be obtained using real datasets, but this is much more difficult to predict than with easier artificial language examples used previously in developing quantum NLP systems. Other approaches to quantum NLP are compared, partly with respect to contemporary issues including informal language, fluency, and truthfulness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源