论文标题

在地球公制空间中,用于最低最大优化的一阶算法

First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces

论文作者

Jordan, Michael I., Lin, Tianyi, Vlatakis-Gkaragkounis, Emmanouil-Vasileios

论文摘要

从最佳运输到稳健的维度降低,可以将大量的机器学习应用程序施加到Riemannian歧管上的Min-Max优化问题中。尽管已经在欧几里得的环境中分析了许多最小的最大算法,但事实证明,将这些结果转化为Riemannian案例被证明是难以捉摸的。张等。 [2022]最近表明,大地凸凹riemannian问题总是容纳鞍点解决方案。受此结果的启发,我们研究了Riemannian和最佳欧几里得空间凸入concave算法之间是否存在性能差距。我们在负面的情况下回答了这个问题,证明Riemannian校正后的外部(RCEG)方法在地球上强烈convex-concave案例中以线性速率实现了最后近期收敛,与欧几里得结果匹配。我们的结果还扩展到了随机或非平滑案例,在这种情况下,RCEG和Riemanian梯度上升下降(RGDA)实现了接近最佳的收敛速率,直到因歧管的曲率而定为因素。

From optimal transport to robust dimensionality reduction, a plethora of machine learning applications can be cast into the min-max optimization problems over Riemannian manifolds. Though many min-max algorithms have been analyzed in the Euclidean setting, it has proved elusive to translate these results to the Riemannian case. Zhang et al. [2022] have recently shown that geodesic convex concave Riemannian problems always admit saddle-point solutions. Inspired by this result, we study whether a performance gap between Riemannian and optimal Euclidean space convex-concave algorithms is necessary. We answer this question in the negative-we prove that the Riemannian corrected extragradient (RCEG) method achieves last-iterate convergence at a linear rate in the geodesically strongly-convex-concave case, matching the Euclidean result. Our results also extend to the stochastic or non-smooth case where RCEG and Riemanian gradient ascent descent (RGDA) achieve near-optimal convergence rates up to factors depending on curvature of the manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源