论文标题

一类通用的全线曲率流及其应用

A class of generalized fully nonlinear curvature flows and its applications

论文作者

Hu, Jinrong, Liu, Jiaqian, Ma, Di, Wang, Jing

论文摘要

在本文中,我们涉及涉及$ k $ th的总体非线性曲率流,其中$ k $的基本对称功能在Eulidean Space中的主曲率半径$ \ rnnn $,$ k $是整数,$ 1 \ leq K \ leq K \ leq k \ leq n-1 $。对于$ 1 \ leq k <n-1 $,基于一些初始数据,并约束在单位球体上定义的平滑正函数$ \ sn $,我们获得了该流量的长时间存在和收敛性。特别是,应以$ k = n-1 $得出相同的结果,而不会对光滑的正函数进行任何限制。

In this paper, we concern a generalized fully nonlinear curvature flow involving $k$-th elementary symmetric function for principal curvature radii in Eulidean space $\rnnn$, $k$ is an integer and $1\leq k\leq n-1$. For $1\leq k< n-1$, based on some initial data and constrains on smooth positive function defined on the unit sphere $\sn$, we obtain the long time existence and convergence of the flow. Especially, the same result shall be derived for $k=n-1$ without any constraint on the smooth positive function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源