论文标题

实例的及时调整验证的语言模型

Instance-wise Prompt Tuning for Pretrained Language Models

论文作者

Jiang, Yuezihan, Yang, Hao, Lin, Junyang, Zhao, Hanyu, Yang, An, Zhou, Chang, Yang, Hongxia, Yang, Zhi, Cui, Bin

论文摘要

迅速学习最近在弥合训练训练任务和各种下游任务之间的差距方面广受欢迎。它冻结了预验证的语言模型(PLM),并且仅调谐一些与任务相关的参数(提示),以实现下游任务,从而大大降低了调整巨型模型的成本。关键的推动因素是与提示中有关的特定于任务知识查询PLM的想法。本文揭示了现有方法的主要局限性,即任务中所有输入数据的不加区别提示忽略输入数据中的内在知识,从而导致了次优的性能。我们介绍了实例提示调整(IPT),这是第一个提示学习范式,将知识从输入数据实例注入了提示,从而为PLM提供了更丰富,更具体的上下文信息。我们制定了一系列策略来制作实例提示,以解决模型质量和成本效益等各种问题。在多个任务和资源设置中,IPT显着胜过基于任务的及时学习方法,并以仅0.5%-1.5%的调谐参数获得了可比的性能。

Prompt Learning has recently gained great popularity in bridging the gap between pretraining tasks and various downstream tasks. It freezes Pretrained Language Models (PLMs) and only tunes a few task-related parameters (prompts) for downstream tasks, greatly reducing the cost of tuning giant models. The key enabler of this is the idea of querying PLMs with task-specific knowledge implicated in prompts. This paper reveals a major limitation of existing methods that the indiscriminate prompts for all input data in a task ignore the intrinsic knowledge from input data, resulting in sub-optimal performance. We introduce Instance-wise Prompt Tuning (IPT), the first prompt learning paradigm that injects knowledge from the input data instances to the prompts, thereby providing PLMs with richer and more concrete context information. We devise a series of strategies to produce instance-wise prompts, addressing various concerns like model quality and cost-efficiency. Across multiple tasks and resource settings, IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源