论文标题
Demeter:使用高维计算的快速和节能食品剖面
Demeter: A Fast and Energy-Efficient Food Profiler using Hyperdimensional Computing in Memory
论文作者
论文摘要
食品分析是预防食品行业健康风险和潜在欺诈所需的任何食品监测系统中的重要一步。测序技术的重大改进正在推动食物分析成为主要的计算瓶颈。不幸的是,最先进的探险师对于食物分析的成本太高。 我们的目标是设计一个解决现有参考者的主要局限性的食品剖面,即(1)从事大规模数据结构,以及(2)为实时监控系统而产生相当大的数据移动。为此,我们提出了Demeter,这是第一个独立于平台的食品分析框架。 Demeter通过使用高维计算(HDC)克服了第一个限制,并有效地执行了食品分析中所需的精确几种分类。我们通过使用基于Memristor设备的Demeter(命名为ACC-DEMETER)的内存硬件加速器来克服第二个限制。 ACC-DEMETER实现了几个特定领域的优化,并利用了Memristors的固有特征,以提高ACC-DEMETER的整体性能和能耗。 我们使用详细的软件建模将Demeter的准确性与其他工业粮食介绍者进行比较。我们通过考虑基于基于硅的原型的精确PCM模型,使用UMC的65nm库合成ACC-Demeter所需的硬件。我们的评估表明,与Kraken2和Metacache(2个最先进的资料仪)相比,ACC-Demeter在典型食品相关数据库上分别实现了192X和724X的A(1)吞吐量改善,以及(2)记忆的36倍和33倍。 Demeter保持可接受的分析精度(在现有工具的2%之内),并造成了非常低的开销。
Food profiling is an essential step in any food monitoring system needed to prevent health risks and potential frauds in the food industry. Significant improvements in sequencing technologies are pushing food profiling to become the main computational bottleneck. State-of-the-art profilers are unfortunately too costly for food profiling. Our goal is to design a food profiler that solves the main limitations of existing profilers, namely (1) working on massive data structures and (2) incurring considerable data movement for a real-time monitoring system. To this end, we propose Demeter, the first platform-independent framework for food profiling. Demeter overcomes the first limitation through the use of hyperdimensional computing (HDC) and efficiently performs the accurate few-species classification required in food profiling. We overcome the second limitation by using an in-memory hardware accelerator for Demeter (named Acc-Demeter) based on memristor devices. Acc-Demeter actualizes several domain-specific optimizations and exploits the inherent characteristics of memristors to improve the overall performance and energy consumption of Acc-Demeter. We compare Demeter's accuracy with other industrial food profilers using detailed software modeling. We synthesize Acc-Demeter's required hardware using UMC's 65nm library by considering an accurate PCM model based on silicon-based prototypes. Our evaluations demonstrate that Acc-Demeter achieves a (1) throughput improvement of 192x and 724x and (2) memory reduction of 36x and 33x compared to Kraken2 and MetaCache (2 state-of-the-art profilers), respectively, on typical food-related databases. Demeter maintains an acceptable profiling accuracy (within 2% of existing tools) and incurs a very low area overhead.