论文标题
通过维度确定的普遍增长缩放法
Universal growth scaling law determined by dimensionality
论文作者
论文摘要
复杂系统的增长模式可以预测它们在大小,数量,质量等方面的变化。了解增长很重要,尤其是对于许多生物学,生态,城市和社会经济系统而言。一个值得注意的生长行为是3/4或2/3-Power缩放定律。它在全球水生和土地生物量生产,真核生物的生长,哺乳动物的脑大小和城市公共设施分布中观察到。在这里,我表明这些复杂的系统属于一个新的通用类别,该类别的系统维度决定了其增长规模。该模型使用生产者消费者动力学来得出N维系统的N/(N+1)功率缩放定律。它的预测通过现实世界的两维数据验证。因此,维度分析为了解广泛的复杂系统中的生长和与生长有关的问题提供了新的范式。
Growth patterns of complex systems predict how they change in sizes, numbers, masses, etc. Understanding growth is important, especially for many biological, ecological, urban, and socioeconomic systems. One noteworthy growth behavior is the 3/4- or and 2/3-power scaling law. It's observed in worldwide aquatic and land biomass productions, eukaryote growth, mammalian brain sizes, and city public facility distributions. Here, I show that these complex systems belong to a new universality class whose system dimensionality determines its growth scaling. The model uses producer-consumer dynamics to derive the n/(n+1) power scaling law for an n-dimensional system. Its predictions are validated with real-world two- and three-dimensional data. Dimensionality analysis thus provides a new paradigm for understanding growth and growth-related problems in a wide range of complex systems.