论文标题

多层网络相互依存的张量分解模型

A tensor factorization model of multilayer network interdependence

论文作者

Aguiar, Izabel, Taylor, Dane, Ugander, Johan

论文摘要

多层网络描述了节点通过在不同层中考虑不同关系的丰富方式。这些多重关系自然用邻接张量表示。在这项工作中,我们研究了此类张量的非负塔克分解(NNTUCK)在KL损失下用作表达因素模型,该模型自然概括了多层网络的现有随机块模型。量化层之间的相互依赖性可以识别网络结构中的冗余,指示不同层之间的关系,并可能告知调查工具以收集社交网络数据。我们提出了基于嵌套非负塔克分解的似然比检验的层独立性,依赖性和冗余的定义。使用合成和现实世界数据,我们评估了NNTUCK作为多层网络模型的使用和解释。从算法上讲,我们表明,使用期望最大化(EM)最大化Nntuck下的对数似然性是逐步的,等同于KL损失下Nntuck的紧张乘数更新,从而扩展了以前已知的对等效性,从而将非校准矩阵从非维度矩阵延伸到非管理式张紧器。

Multilayer networks describe the rich ways in which nodes are related by accounting for different relationships in separate layers. These multiple relationships are naturally represented by an adjacency tensor. In this work we study the use of the nonnegative Tucker decomposition (NNTuck) of such tensors under a KL loss as an expressive factor model that naturally generalizes existing stochastic block models of multilayer networks. Quantifying interdependencies between layers can identify redundancies in the structure of a network, indicate relationships between disparate layers, and potentially inform survey instruments for collecting social network data. We propose definitions of layer independence, dependence, and redundancy based on likelihood ratio tests between nested nonnegative Tucker decompositions. Using both synthetic and real-world data, we evaluate the use and interpretation of the NNTuck as a model of multilayer networks. Algorithmically, we show that using expectation maximization (EM) to maximize the log-likelihood under the NNTuck is step-by-step equivalent to tensorial multiplicative updates for the NNTuck under a KL loss, extending a previously known equivalence from nonnegative matrices to nonnegative tensors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源