论文标题
关于天体振幅的分析结构的注释
A Note on the Analytic Structure of Celestial Amplitudes
论文作者
论文摘要
通过在“普通”振幅上应用梅林变换和分析延续获得的天体振幅具有有趣的特性,可以对基本理论提供有用的见解。因此,他们的分析结构引起了极大的兴趣,需要更好地理解。在本文中,我们批判性地研究了无质量低能量有效田间理论中天体振幅的分析结构。我们发现,固定顺序环的贡献,它在负$β$平面上产生多孔,通常不提供对天体振幅的分析结构的准确描述。通过使用重新归一化组方程(RGE)对领先的对数贡献进行重新点亮,我们观察到更丰富的分析结构,这些结构通常包含分支切割。如果RGE满足某些关系,也可以生成多杆或移动单极。预计包括子领先的对数贡献将为图片带来其他更正。但是,没有新的方法,很难做出一般性的陈述,因为梅林转化的分析形式很难获得。
Celestial amplitudes, obtained by applying Mellin transform and analytic continuation on "ordinary" amplitudes, have interesting properties which may provide useful insights on the underlying theory. Their analytic structures are thus of great interest and need to be better understood. In this paper, we critically examine the analytic structure of celestial amplitudes in a massless low-energy effective field theory. We find that, fixed-order loop contributions, which generate multipoles on the negative $β$-plane, in general do not provide an accurate description of the analytic structure of celestial amplitudes. By resumming over the leading logarithmic contributions using renormalization group equations (RGEs), we observe much richer analytic structures, which generally contain branch cuts. It is also possible to generate multipoles or shifted single poles if the RGEs satisfy certain relations. Including sub-leading logarithmic contributions is expected to introduce additional corrections to the picture. However, without a new approach, it is difficult to make a general statement since the analytic form of the Mellin transform is challenging to obtain.