论文标题

具有算术约束的排列

Permutations with arithmetic constraints

论文作者

Pomerance, Carl

论文摘要

令$ s _ {\ rm lcm}(n)$表示$ [n] = \ {n] = \ {1,2,\ dots,n \} $的排列集$ {\ rm lcm} [j,rm lcm} [j,j,j,j)]此外,令$ s _ {\ rm div}(n)$表示$ [n] $的排列$π$π$,这样$ j \midπ(j)$或$π(j)\ mid j $ in [n] $中的每个$ j \。显然,$ s _ {\ rm div}(n)\ subset s _ {\ rm lcm}(n)$。我们获得了这些集合计数的上限和下限,表明它们几何生长。我们还从最近的论文中证明了关于$ [n] $的“反省”排列数量的猜想,这意味着每个$ \ gcd(j,j,j))> 1 $,除非$ j = 1 $。

Let $S_{\rm lcm}(n)$ denote the set of permutations $π$ of $[n]=\{1,2,\dots,n\}$ such that ${\rm lcm}[j,π(j)]\le n$ for each $j\in[n]$. Further, let $S_{\rm div}(n)$ denote the number of permutations $π$ of $[n]$ such that $j\midπ(j)$ or $π(j)\mid j$ for each $j\in[n]$. Clearly $S_{\rm div}(n)\subset S_{\rm lcm}(n)$. We get upper and lower bounds for the counts of these sets, showing they grow geometrically. We also prove a conjecture from a recent paper on the number of "anti-coprime" permutations of $[n]$, meaning that each $\gcd(j,π(j))>1$ except when $j=1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源