论文标题

关于第五最大投影常数的值

On the value of the fifth maximal projection constant

论文作者

Derȩgowska, Beata, Fickus, Matthew, Foucart, Simon, Lewandowska, Barbara

论文摘要

令$λ(m)$表示在实际$ m $二维子空间上的最大绝对投影常数。由于$ m> 1 $的唯一已知值为$λ(2)= 4/3 $,因此很难确切确定这个数量。还有数值证据表明$λ(3)=(1+ \ sqrt {5})/2 $。在本文中,依靠某些相互无偏的等法紧密框架的新结构,我们表明$λ(5)\ geq 5(11+6 \ sqrt {5})/59 \ of 2.06919 $。该值与B. L. Chalmers获得的$λ(5)$的数值估计相吻合,从而加强了相信这是$λ(5)$的确切值。

Let $λ(m)$ denote the maximal absolute projection constant over real $m$-dimensional subspaces. This quantity is extremely hard to determine exactly, as testified by the fact that the only known value of $λ(m)$ for $m>1$ is $λ(2)=4/3$. There is also numerical evidence indicating that $λ(3)=(1+\sqrt{5})/2$. In this paper, relying on a new construction of certain mutually unbiased equiangular tight frames, we show that $λ(5)\geq 5(11+6\sqrt{5})/59 \approx 2.06919$. This value coincides with the numerical estimation of $λ(5)$ obtained by B. L. Chalmers, thus reinforcing the belief that this is the exact value of $λ(5)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源