论文标题
重新访问广义Parton分布的演化方程
Revisiting evolution equations for generalised parton distributions
论文作者
论文摘要
我们重新审视了在动量空间中广义的Parton分布(GPD)的演变。我们以适合数值实现的形式在扰动QCD(PQCD)中的一环的进化内核,并可以准确研究其性质。这导致了GPD进化方程式的首次开源实施,能够覆盖整个运动学区域并允许进行重质阈值交叉。 GPD演化方程的数值实现是可以通过APFEL ++进化库公开访问的,并且可以在Partons框架内获得。 我们的公式利用了在$ \ overline {\ mbox {ms}} $方案中重新统计的轻孔量规上的操作员定义。为了清楚起见,我们重新计算了PQCD中一环的进化核,确认了先前的计算。我们获得了从GPD总规则衍生的进化内核的一般条件,并表明我们的配方遵守这些条件。我们分析表明,我们的计算在适当的限制下重现了DGLAP和ERBL方程,并保证GPD的连续性。我们从数值上检查演变的GPD是否满足DGLAP和ERBL限制,连续性和多项式性。我们基准在保形空间中反对分析演化的数值实施。最后,我们对GPD演化的现有实施进行了数值比较,以发现对后者可访问的运动区域的一般良好协议。 这项工作提供了对GPD演化方程式的教学描述,该方程式受益于新的兴趣,因为正在设计的将来的越野器(例如美国和中国的电子船员)。它还为将GPD进化代码扩展到PQCD中的较高准确性的方式铺平了道路,以期在这些设施的精确现象学上。
We revisit the evolution of generalised parton distributions (GPDs) in momentum space. We formulate the evolution kernels at one-loop in perturbative QCD (pQCD) in a form suitable for numerical implementation and that allows for an accurate study of their properties. This leads to the first open-source implementation of GPD evolution equations able to cover the entire kinematic region and allowing for heavy-quark-threshold crossings. The numerical implementation of the GPD evolution equations is publicly accessible through the APFEL++ evolution library and is available within the PARTONS framework. Our formulation makes use of the operator definition of GPDs in light-cone gauge renormalised in the $\overline{\mbox{MS}}$ scheme. For the sake of clarity, we recompute the evolution kernels at one-loop in pQCD, confirming previous calculations. We obtain general conditions on the evolution kernels deriving from the GPD sum rules and show that our formulation obeys these conditions. We analytically show that our calculation reproduces the DGLAP and the ERBL equations in the appropriate limits and that it guarantees the continuity of GPDs. We numerically check that the evolved GPDs fulfil DGLAP and ERBL limits, continuity, and polynomiality. We benchmark our numerical implementation against analytical evolution in conformal space. Finally, we perform a numerical comparison to an existing implementation of GPD evolution finding a general good agreement on the kinematic region accessible to the latter. This work provides a pedagogical description of GPD evolution equations which benefits from a renewed interest as future colliders, such as the electron-ion colliders in the US and in China, are being designed. It also paves the way to the extension of GPD evolution codes to higher accuracies in pQCD desirable for precision phenomenology at these facilities.