论文标题

Falconn ++:一种局部敏感的过滤方法,用于大约最近的邻居搜索

Falconn++: A Locality-sensitive Filtering Approach for Approximate Nearest Neighbor Search

论文作者

Pham, Ninh, Liu, Tao

论文摘要

我们提出了Falconn ++,这是一种新型局部敏感的过滤方法,可在角度距离上进行大约最近的邻居搜索。 Falconn ++可以在任何哈希桶\ textit {}查询中滤除潜在的遥远点,与其他基于哈希的解决方案相比,这会导致更高质量的候选者。从理论上讲,Falconn ++渐近地达到的查询时间复杂性比Falconn(一种在角度距离上是对位置敏感的散列方案)的较低。从经验上讲,Falconn ++在许多现实世界中的数据集中都比Falconn实现更高的召回速度权衡。 Falconn ++也与HNSW竞争,HNSW是高度搜索召回机制的有效代表。

We present Falconn++, a novel locality-sensitive filtering approach for approximate nearest neighbor search on angular distance. Falconn++ can filter out potential far away points in any hash bucket \textit{before} querying, which results in higher quality candidates compared to other hashing-based solutions. Theoretically, Falconn++ asymptotically achieves lower query time complexity than Falconn, an optimal locality-sensitive hashing scheme on angular distance. Empirically, Falconn++ achieves higher recall-speed tradeoffs than Falconn on many real-world data sets. Falconn++ is also competitive with HNSW, an efficient representative of graph-based solutions on high search recall regimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源