论文标题

组件的新安全边界差异挑战XOR PUF反对机器学习建模攻击

A New Security Boundary of Component Differentially Challenged XOR PUFs Against Machine Learning Modeling Attacks

论文作者

Li, Gaoxiang, Mursi, Khalid T., Aseeri, Ahmad O., Alkatheiri, Mohammed S., Zhuang, Yu

论文摘要

物理不封函数功能(PUF)是资源受限网络节点的有希望的安全性基础。 XOR ARBITER PUF(XOR PUF或XPUF)是一种经过深入研究的PUF,旨在提高仲裁者PUF的安全性,这可能是最轻巧的延迟PUF。最近,发现了非常强大的机器学习攻击方法,并能够轻松打破大型XPUF,这对于早期的机器学习攻击方法非常安全。组件分化挑战的XPUFS(CDC-XPUF)是XPUFS,具有不同的组件PUF,会受到不同的挑战。研究表明,与传统的XPUFS相比,它们对机器学习攻击的攻击要安全得多,而传统的XPUF则受到同样的挑战。但是这些研究都是基于较早的机器学习攻击方法的,因此尚不清楚CDC-XPUF在最近发现的强大攻击方法下是否可以保持安全。在本文中,通过微调CDC-XPUF的两种参数来调整两种当前最强大的两种用于攻击XPUF的机器学习方法。进行了使用模拟PUF数据和由在现场可编程栅极阵列(FPGA)实现的PUF生成的硅数据的攻击实验,并且实验结果表明,在适应性的新攻击方法下,某些先前安全的CDC-XPUF不再安全,而其他cdc-xpufs则不再安全,而其他电路参数则剩下的cdc-xpufs仍然存在。因此,我们的实验攻击研究重新定义了PUF电路参数空间的安全区域和不安全区域之间的边界,为PUF制造商和IoT安全应用程序开发人员提供了有价值的信息,以选择具有安全参数值的PUF。

Physical Unclonable Functions (PUFs) are promising security primitives for resource-constrained network nodes. The XOR Arbiter PUF (XOR PUF or XPUF) is an intensively studied PUF invented to improve the security of the Arbiter PUF, probably the most lightweight delay-based PUF. Recently, highly powerful machine learning attack methods were discovered and were able to easily break large-sized XPUFs, which were highly secure against earlier machine learning attack methods. Component-differentially-challenged XPUFs (CDC-XPUFs) are XPUFs with different component PUFs receiving different challenges. Studies showed they were much more secure against machine learning attacks than the conventional XPUFs, whose component PUFs receive the same challenge. But these studies were all based on earlier machine learning attack methods, and hence it is not clear if CDC-XPUFs can remain secure under the recently discovered powerful attack methods. In this paper, the two current most powerful two machine learning methods for attacking XPUFs are adapted by fine-tuning the parameters of the two methods for CDC-XPUFs. Attack experiments using both simulated PUF data and silicon data generated from PUFs implemented on field-programmable gate array (FPGA) were carried out, and the experimental results showed that some previously secure CDC-XPUFs of certain circuit parameter values are no longer secure under the adapted new attack methods, while many more CDC-XPUFs of other circuit parameter values remain secure. Thus, our experimental attack study has re-defined the boundary between the secure region and the insecure region of the PUF circuit parameter space, providing PUF manufacturers and IoT security application developers with valuable information in choosing PUFs with secure parameter values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源