论文标题

用于到达类型[K+3]和[K+5]生物质量等方程的数值解的方法等于Bixratic,用于K的不同值K的不同值

Methods for arriving at numerical solutions for equations of the type [k+3] and [k+5] biquadratics equal to a bi-quadratic for different values of k

论文作者

Tomita, Seiji, Couto, Oliver

论文摘要

不同的作者已经对参考数字1,2和3的权力总和进行了分析,但是以前从未完成过与许多相当于四分之一的生物质量总和的总和的系统方法。在本文中,我们提供了在第一部分中找到方程A的数值解决方案的方法。在第二部分中,我们提供了寻找上述方程B的数值解决方案的方法。众所周知,通过常规方法,找到生物二级方程的参数解决方案并不容易。因此,作者使用椭圆曲线理论找到了方程A和B的数值解决方案。

Different authors have done analysis regarding sums of powers References number 1,2 and 3, but systematic approach for solving Diophantine equations having sums of many biquadratics equal to a quartic has not been done before. In this paper we give methods for finding numerical solutions to equation A given above in section one. Next in section two, we give methods for finding numerical solutions for equation B given above. As is known that finding parametric solutions to biquadratic equations is not easy by conventional method. So the authors have found numerical solutions to equation A and B using elliptic curve theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源