论文标题
分级的伪级较小的拓扑模块较小的序列光谱
Graded Pseudo Weakly Prime Spectrum Of Graded Topological Modules
论文作者
论文摘要
在这项研究中,我们介绍了G级R模型的分级伪弱的较弱的次模型,这是分级弱质理想的扩展,而不是G级环。在分级伪弱质量子模型的分级光谱上,我们研究了Zariski拓扑。研究了该拓扑空间的不同方面,它们与正在研究的G级R模块的代数特性有关。
In this study, we introduce graded pseudo weakly prime submodules of G-graded R-modules, which are an extension of graded weakly prime ideals over G-graded rings. On the graded spectrum of graded pseudo weakly prime submodules, we investigate the Zariski topology. Different aspects of this topological space are investigated, and they are linked to the algebraic properties of the G-graded R-modules under study.