论文标题
使用解决方案选择观测值的有序加权平均标准的偏好启发方法
A Preference Elicitation Approach for the Ordered Weighted Averaging Criterion using Solution Choice Observations
论文作者
论文摘要
在不确定性或多个目标下的决策通常要求决策者对风险或权衡的偏好。如果已知此偏好,则可以将有序的加权平均(OWA)标准应用于汇总场景或目标中。但是,提出这种偏好可能会具有挑战性,因为我们需要明确说明通常只有隐性知识。我们探索一种基于优化的偏好启发方法,以识别适当的OWA权重。假设存在观测值,我们遵循一种数据驱动的方法,在该观测值中,决策者选择了首选解决方案,但在启发过程中否则仍然被动。然后,我们使用这些观察结果来确定潜在的偏好,该偏好矢量在每个观测值的最小距离距离可行矢量的polyhedra的距离处。使用我们的基于优化的模型,通过解决线性程序和标准OWA问题的交替顺序来确定权重。关于选择,分配和背包问题的规避风险偏好矢量的数值实验表明,我们的被动启发方法与必须进行成对比较的情况很好地进行了比较,并且在决策者的选择中存在不一致时,尤其表现出色。
Decisions under uncertainty or with multiple objectives usually require the decision maker to formulate a preference regarding risks or trade-offs. If this preference is known, the ordered weighted averaging (OWA) criterion can be applied to aggregate scenarios or objectives into a single function. Formulating this preference, however, can be challenging, as we need to make explicit what is usually only implicit knowledge. We explore an optimization-based method of preference elicitation to identify appropriate OWA weights. We follow a data-driven approach, assuming the existence of observations, where the decision maker has chosen the preferred solution, but otherwise remains passive during the elicitation process. We then use these observations to determine the underlying preference by finding the preference vector that is at minimum distance to the polyhedra of feasible vectors for each of the observations. Using our optimization-based model, weights are determined by solving an alternating sequence of linear programs and standard OWA problems. Numerical experiments on risk-averse preference vectors for selection, assignment and knapsack problems show that our passive elicitation method compares well against having to conduct pairwise comparisons and performs particularly well when there are inconsistencies in the decision maker's choices.