论文标题

图形属性预测的最短路径网络

Shortest Path Networks for Graph Property Prediction

论文作者

Abboud, Ralph, Dimitrov, Radoslav, Ceylan, İsmail İlkan

论文摘要

大多数图形神经网络模型都依赖于传递范式的特定消息,在该范式中,该图是迭代传播图表表示直接邻域中每个节点的传播节点表示。尽管非常突出,但这种范式导致信息传播瓶颈,因为信息在中介节点表示上反复压缩,这会导致信息丢失,因此几乎不可能从遥远的节点收集有意义的信号。为了解决这个问题,我们提出了传递神经网络的最短路径消息,其中图的节点表示在最短路径社区中都传播到每个节点。在这种情况下,即使节点不是邻居,也可以直接在彼此之间进行交流,从而打破了信息瓶颈,从而导致更丰富的表示形式。我们的框架概括了传递神经网络的消息,从而产生了一类更具表现力的模型,包括一些最新的最新模型。我们验证了该框架基本模型在专用合成实验以及现实图形分类和回归基准上的能力,并获得最先进的结果。

Most graph neural network models rely on a particular message passing paradigm, where the idea is to iteratively propagate node representations of a graph to each node in the direct neighborhood. While very prominent, this paradigm leads to information propagation bottlenecks, as information is repeatedly compressed at intermediary node representations, which causes loss of information, making it practically impossible to gather meaningful signals from distant nodes. To address this, we propose shortest path message passing neural networks, where the node representations of a graph are propagated to each node in the shortest path neighborhoods. In this setting, nodes can directly communicate between each other even if they are not neighbors, breaking the information bottleneck and hence leading to more adequately learned representations. Our framework generalizes message passing neural networks, resulting in a class of more expressive models, including some recent state-of-the-art models. We verify the capacity of a basic model of this framework on dedicated synthetic experiments, and on real-world graph classification and regression benchmarks, and obtain state-of-the art results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源