论文标题

关于斯特里亚语单词的谎言复杂性

On the Lie complexity of Sturmian words

论文作者

De Luca, Alessandro, Fici, Gabriele

论文摘要

Bell and Shallit最近引入了无限单词$ s $的谎言复杂性,作为每个长度的功能计数的单词元素的数量,其元素都是$ s $的因素。他们证明,使用代数技术证明,谎言复杂性在上面是因子复杂性加一个的第一个区别。因此,它对于具有线性因子复杂性的单词统一,尤其是sturmian单词最多是2,这恰恰是每个$ n $的因子复杂性$ n+1 $的单词。在本说明中,我们提供了贝尔的结果的基本组合证明,并为任何斯特里亚语单词的谎言复杂性提供了确切的公式。

Bell and Shallit recently introduced the Lie complexity of an infinite word $s$ as the function counting for each length the number of conjugacy classes of words whose elements are all factors of $s$. They proved, using algebraic techniques, that the Lie complexity is bounded above by the first difference of the factor complexity plus one; hence, it is uniformly bounded for words with linear factor complexity, and, in particular, it is at most 2 for Sturmian words, which are precisely the words with factor complexity $n+1$ for every $n$. In this note, we provide an elementary combinatorial proof of the result of Bell and Shallit and give an exact formula for the Lie complexity of any Sturmian word.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源