论文标题

量子支持向量机没有迭代

Quantum Support Vector Machine without Iteration

论文作者

Zhang, Rui, Wang, Jian, Jiang, Nan, Wang, Zichen

论文摘要

量子算法可以在不同方面增强机器学习。 2014年,Rebentrost $ et〜$ $构建了最小二乘量子支持向量机(LS-QSVM),其中掉期测试在实现分类中起着至关重要的作用。但是,由于在交换测试中无法重复使用先前测试的输出状态,因此必须重复量子算法LS-QSVM,以准备量子台,操纵操作和进行测量。本文提出了基于广义量子幅度估计(AE-QSVM)的QSVM,该量子估计(AE-QSVM)摆脱了重复过程的约束并保存量子资源。首先,通过使用量子奇异值分解来训练AE-QSVM。然后,通过使用广义量子幅度估计来对查询样品进行分类,在该估计中,可以通过添加辅助矩形而不是重复算法来实现高精度。 AE-QSVM的复杂性降低至$ O(κ^{3} \ Varepsilon^{ - 3}(-3}(log(mn)+1)))$具有准确的$ \ varepsilon $,其中$ m $是培训向量的数量,$ n $是功能空间的尺寸,$κ$是条件数字。实验表明,在训练矩阵,迭代次数,空间复杂性和时间复杂性方面,AE-QSVM是有利的。

Quantum algorithms can enhance machine learning in different aspects. In 2014, Rebentrost $et~al.$ constructed a least squares quantum support vector machine (LS-QSVM), in which the Swap Test plays a crucial role in realizing the classification. However, as the output states of a previous test cannot be reused for a new test in the Swap Test, the quantum algorithm LS-QSVM has to be repeated in preparing qubits, manipulating operations, and carrying out the measurement. This paper proposes a QSVM based on the generalized quantum amplitude estimation (AE-QSVM) which gets rid of the constraint of repetitive processes and saves the quantum resources. At first, AE-QSVM is trained by using the quantum singular value decomposition. Then, a query sample is classified by using the generalized quantum amplitude estimation in which high accuracy can be achieved by adding auxiliary qubits instead of repeating the algorithm. The complexity of AE-QSVM is reduced to $O(κ^{3}\varepsilon^{-3}(log(mn)+1))$ with an accuracy $\varepsilon$, where $m$ is the number of training vectors, $n$ is the dimension of the feature space, and $κ$ is the condition number. Experiments demonstrate that AE-QSVM is advantageous in terms of training matrix, the number of iterations, space complexity, and time complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源