论文标题
有限投影空间的色素指数
The chromatic index of finite projective spaces
论文作者
论文摘要
PG $(N,Q)$,GF $(Q)$的$ n $维投影空间的行着色是对所有PG $(N,Q)$的颜色的分配,因此具有相同颜色的任何两条线都不会相交。 PG $(N,Q)$的色度指数,用$χ'(PG(N,Q))$表示,是PG $(N,Q)$的颜色的最少颜色。本文将确定pg $(n,q)$的色度索引的问题转化为检查PG $(3,Q)$和PG $(4,Q)$具有某些属性的存在的问题。特别是,表明对于任何奇数整数$ n $和$ q \ in \ {3,4,8,16 \} $,$χ'(pg(n,q))=(q^n-1)/(q^n-1)$ $ q \ in \ {3,4,8,16 \} $。
A line coloring of PG$(n,q)$, the $n$-dimensional projective space over GF$(q)$, is an assignment of colors to all lines of PG$(n,q)$ so that any two lines with the same color do not intersect. The chromatic index of PG$(n,q)$, denoted by $χ'(PG(n,q))$, is the least number of colors for which a coloring of PG$(n,q)$ exists. This paper translates the problem of determining the chromatic index of PG$(n,q)$ to the problem of examining the existences of PG$(3,q)$ and PG$(4,q)$ with certain properties. In particular, it is shown that for any odd integer $n$ and $q\in\{3,4,8,16\}$, $χ'(PG(n,q))=(q^n-1)/(q-1)$, which implies the existence of a parallelism of PG$(n,q)$ for any odd integer $n$ and $q\in\{3,4,8,16\}$.