论文标题

有效的人:有效的神经辐射场

EfficientNeRF: Efficient Neural Radiance Fields

论文作者

Hu, Tao, Liu, Shu, Chen, Yilun, Shen, Tiancheng, Jia, Jiaya

论文摘要

神经辐射场(NERF)已疯狂地应用于其3D场景的高质量表示的各种任务。它需要长时间的每场训练时间和每图像测试时间。在本文中,我们将有效的人作为一种有效的基于NERF的方法表示代表3D场景并合成新型视图图像。尽管存在加速训练或测试过程的几种方法,但同时很难同时减少这两个阶段的时间。我们分析了采样点的密度和重量分布,然后分别提出在粗和罚款阶段的有效和关键采样,以显着提高采样效率。此外,我们设计了一种新颖的数据结构,以在测试过程中缓存整个场景以加速渲染速度。总体而言,我们的方法可以减少超过88%的训练时间,达到200 fps的渲染速度,同时仍然达到竞争精度。实验证明,我们的方法促进了NERF在现实世界中的实用性,并实现了许多应用程序。

Neural Radiance Fields (NeRF) has been wildly applied to various tasks for its high-quality representation of 3D scenes. It takes long per-scene training time and per-image testing time. In this paper, we present EfficientNeRF as an efficient NeRF-based method to represent 3D scene and synthesize novel-view images. Although several ways exist to accelerate the training or testing process, it is still difficult to much reduce time for both phases simultaneously. We analyze the density and weight distribution of the sampled points then propose valid and pivotal sampling at the coarse and fine stage, respectively, to significantly improve sampling efficiency. In addition, we design a novel data structure to cache the whole scene during testing to accelerate the rendering speed. Overall, our method can reduce over 88\% of training time, reach rendering speed of over 200 FPS, while still achieving competitive accuracy. Experiments prove that our method promotes the practicality of NeRF in the real world and enables many applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源