论文标题

超越准确性:可行的时间信用分配规则的概括属性

Beyond accuracy: generalization properties of bio-plausible temporal credit assignment rules

论文作者

Liu, Yuhan Helena, Ghosh, Arna, Richards, Blake A., Shea-Brown, Eric, Lajoie, Guillaume

论文摘要

为了揭示大脑的学习方式,正在进行的工作寻求培训复发性神经网络(RNN)的梯度下降算法的生物学成分近似。然而,除了任务准确性之外,尚不清楚此类学习规则是否融合了与非生物学上可行的对应物相比表现出不同程度的泛化水平的解决方案。利用基于损失景观曲率的深度学习理论的结果,我们问:生物学上可见的梯度近似如何影响概括?我们首先证明,与他们的机器学习相比,对培训RNN的最先进的生物学知识学习规则表现出更差,更可变的概括性能,而机器学习对应的对应物更接近真正的梯度。接下来,我们验证了这种概括性能与损失景观曲率显着相关,并且我们表明,生物学上可靠的学习规则倾向于接近突触体重空间中的高外观区域。使用动力学系统中的工具,我们得出理论论点并提出了解释这种现象的定理。这可以预测我们的数值结果,并解释了为什么生物学上可见的规则会导致更糟和更可变的泛化属性。最后,我们建议大脑可以使用的潜在补救措施来减轻这种影响。据我们所知,我们的分析是第一个确定人造和生物学上可行的学习规则之间这种泛化差距的原因,这可以帮助指导未来的研究大脑如何学习概括的解决方案。

To unveil how the brain learns, ongoing work seeks biologically-plausible approximations of gradient descent algorithms for training recurrent neural networks (RNNs). Yet, beyond task accuracy, it is unclear if such learning rules converge to solutions that exhibit different levels of generalization than their nonbiologically-plausible counterparts. Leveraging results from deep learning theory based on loss landscape curvature, we ask: how do biologically-plausible gradient approximations affect generalization? We first demonstrate that state-of-the-art biologically-plausible learning rules for training RNNs exhibit worse and more variable generalization performance compared to their machine learning counterparts that follow the true gradient more closely. Next, we verify that such generalization performance is correlated significantly with loss landscape curvature, and we show that biologically-plausible learning rules tend to approach high-curvature regions in synaptic weight space. Using tools from dynamical systems, we derive theoretical arguments and present a theorem explaining this phenomenon. This predicts our numerical results, and explains why biologically-plausible rules lead to worse and more variable generalization properties. Finally, we suggest potential remedies that could be used by the brain to mitigate this effect. To our knowledge, our analysis is the first to identify the reason for this generalization gap between artificial and biologically-plausible learning rules, which can help guide future investigations into how the brain learns solutions that generalize.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源