论文标题

从小型和本地数据集中学习代码摘要

Learning code summarization from a small and local dataset

论文作者

Ahmed, Toufique, Devanbu, Premkumar

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Foundation models (e.g., CodeBERT, GraphCodeBERT, CodeT5) work well for many software engineering tasks. These models are pre-trained (using self-supervision) with billions of code tokens, and then fine-tuned with hundreds of thousands of labeled examples, typically drawn from many projects. However, software phenomena can be very project-specific. Vocabulary, and other phenomena vary substantially with each project. Thus, training on project-specific data, and testing on the same project, is a promising idea. This hypothesis has to be evaluated carefully, e.g., in a time-series setting, to prevent training-test leakage. We compare several models and training approaches, including same-project training, cross-project training, training a model especially designed to be sample efficient (and thus prima facie well-suited for learning in a limited-sample same-project setting) and a maximalist hybrid approach, fine-tuning first on many projects in many languages and then training on the same-project. We find that the maximalist hybrid setting provides consistent, substantial gains over the state-of-the-art, on many different projects in both Java and Python.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源