论文标题

稀疏的图形诱导周期堆积数具有对数树宽

Sparse graphs with bounded induced cycle packing number have logarithmic treewidth

论文作者

Bonamy, Marthe, Bonnet, Édouard, Déprés, Hugues, Esperet, Louis, Geniet, Colin, Hilaire, Claire, Thomassé, Stéphan, Wesolek, Alexandra

论文摘要

图形为$ \ Mathcal {o} _k $ - 如果不包含$ K $ pairwise pertex-disjoint和非Adjacent Cycles,则图形是图形。我们证明“稀疏”(在这里,不包含大型完整的两部分图形作为子图)$ \ Mathcal {o} _k $ - Free Graphs在最多的位置上都具有treewidth(甚至最多,反馈顶点集号码)。这是最佳的,因为$ \ Mathcal {o} _2 $ - free图的无限家族,而没有$ k_ {2,3} $作为子图,而其treewidth是(至少)对数。 使用我们的结果,我们表明,可以在quasi-polynomial时间时间求解最大独立集和3色。 Other consequences include that most of the central NP-complete problems (such as Maximum Independent Set, Minimum Vertex Cover, Minimum Dominating Set, Minimum Coloring) can be solved in polynomial time in sparse $\mathcal{O}_k$-free graphs, and that deciding the $\mathcal{O}_k$-freeness of sparse graphs is polynomial time solvable.

A graph is $\mathcal{O}_k$-free if it does not contain $k$ pairwise vertex-disjoint and non-adjacent cycles. We prove that "sparse" (here, not containing large complete bipartite graphs as subgraphs) $\mathcal{O}_k$-free graphs have treewidth (even, feedback vertex set number) at most logarithmic in the number of vertices. This is optimal, as there is an infinite family of $\mathcal{O}_2$-free graphs without $K_{2,3}$ as a subgraph and whose treewidth is (at least) logarithmic. Using our result, we show that Maximum Independent Set and 3-Coloring in $\mathcal{O}_k$-free graphs can be solved in quasi-polynomial time. Other consequences include that most of the central NP-complete problems (such as Maximum Independent Set, Minimum Vertex Cover, Minimum Dominating Set, Minimum Coloring) can be solved in polynomial time in sparse $\mathcal{O}_k$-free graphs, and that deciding the $\mathcal{O}_k$-freeness of sparse graphs is polynomial time solvable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源