论文标题
ILMART:可解释的排名用约束的Lambdamart
ILMART: Interpretable Ranking with Constrained LambdaMART
论文作者
论文摘要
可解释的学习(LTR)是可解释AI的研究领域内的一个新兴领域,旨在开发可理解和准确的预测模型。尽管以前的大多数研究工作都集中在创建事后的解释上,但在本文中,我们研究了如何培训有效且本质上可区分的排名模型。开发这些模型特别具有挑战性,还需要在排名质量和模型复杂性之间找到权衡。最先进的排名者是由大型树木或几种神经层制成的,实际上是无限数量的功能相互作用,使其成为黑匣子。先前关于本质上解动的排名模型通过避免功能之间的相互作用来解决此问题的方法,从而相对于全复杂模型,可以支付显着的性能下降。相反,我们基于Lambdamart的新颖且可解释的LTR解决方案ILMART能够通过利用有限和受控数量的成对功能相互作用来训练有效且可理解的模型。在三个公共可用的LTR数据集上进行的详尽和可重现的实验表明,ILMART的表现优于当前最新解决方案,用于可解释的大幅度排名,而NDCG的增长率最高为8%。
Interpretable Learning to Rank (LtR) is an emerging field within the research area of explainable AI, aiming at developing intelligible and accurate predictive models. While most of the previous research efforts focus on creating post-hoc explanations, in this paper we investigate how to train effective and intrinsically-interpretable ranking models. Developing these models is particularly challenging and it also requires finding a trade-off between ranking quality and model complexity. State-of-the-art rankers, made of either large ensembles of trees or several neural layers, exploit in fact an unlimited number of feature interactions making them black boxes. Previous approaches on intrinsically-interpretable ranking models address this issue by avoiding interactions between features thus paying a significant performance drop with respect to full-complexity models. Conversely, ILMART, our novel and interpretable LtR solution based on LambdaMART, is able to train effective and intelligible models by exploiting a limited and controlled number of pairwise feature interactions. Exhaustive and reproducible experiments conducted on three publicly-available LtR datasets show that ILMART outperforms the current state-of-the-art solution for interpretable ranking of a large margin with a gain of nDCG of up to 8%.