论文标题
在自旋轨道耦合的玻色子和二维孤子中,用分数动能凝结
One- and two-dimensional solitons in spin-orbit-coupled Bose-Einstein condensates with fractional kinetic energy
论文作者
论文摘要
我们解决了自旋轨道耦合(SOC)的效果,在现象学上添加到了两种组分的玻色 - 因斯坦冷凝物中,该冷凝水是由通过征税飞行在一维(1D和2D)设置中移动的颗粒组成的。耦合的总-pitaevskii方程的相应系统包括分数动能运算符,其特征在于征收指数α<2(正常动能对应于α= 2)。 SOC术语具有强度λ在2D情况下会产生强大的影响:它们在1 <α<2的间隔内创建了半涡流(SV)和混合模式(MM)类型的稳定孤子的家族,其中超批评崩溃并不承认SOC的存在稳定孤子的存在。在λ-> 0处,这些孤子的振幅消失为(λ)^{1/(α-1)}。
We address effects of spin-orbit coupling (SOC), phenomenologically added to a two-component Bose-Einstein condensate composed of particles moving by Levy flights, in one- and two-dimensional (1D and 2D) settings. The corresponding system of coupled Gross-Pitaevskii equations includes fractional kinetic-energy operators, characterized by the Levy index, α< 2 (the normal kinetic energy corresponds to α= 2). The SOC terms, with strength λ, produce strong effects in the 2D case: they create families of stable solitons of the semi-vortex (SV) and mixed-mode (MM) types in the interval of 1 < α< 2, where the supercritical collapse does not admit the existence of stable solitons in the absence of the SOC. At λ--> 0, amplitudes of these solitons vanish as (λ)^{1/(α- 1)}.