论文标题

作用在有界全态函数空间的组成算子的奇异行为

Ergodic behaviors of composition operators acting on space of bounded holomorphic functions

论文作者

Keshavarzi, Hamzeh, Hedayatian, Karim

论文摘要

我们完全表征了$ h^\ infty(\ mathbb {b} _n)$上的平均千古构图运算符。特别是,我们表明,在且仅当它均匀地含义千古时才时,作用在此空间上的组成算子是平均的恒星。

We completely characterize the mean ergodic composition operators on $H^\infty(\mathbb{B}_n)$. In particular, we show that a composition operator acting on this space is mean ergodic if and only if it is uniformly mean ergodic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源