论文标题
作用在有界全态函数空间的组成算子的奇异行为
Ergodic behaviors of composition operators acting on space of bounded holomorphic functions
论文作者
论文摘要
我们完全表征了$ h^\ infty(\ mathbb {b} _n)$上的平均千古构图运算符。特别是,我们表明,在且仅当它均匀地含义千古时才时,作用在此空间上的组成算子是平均的恒星。
We completely characterize the mean ergodic composition operators on $H^\infty(\mathbb{B}_n)$. In particular, we show that a composition operator acting on this space is mean ergodic if and only if it is uniformly mean ergodic.