论文标题

部分可观测时空混沌系统的无模型预测

Strict Half-Singleton Bound, Strict Direct Upper Bound for Linear Insertion-Deletion Codes and Optimal Codes

论文作者

Ji, Qinqin, Zheng, Dabin, Chen, Hao, Wang, Xiaoqiang

论文摘要

插入缺失代码(简称INSDEL代码)用于纠正通信中的同步错误,以及在其他许多有趣的领域中,例如DNA存储,日期分析,种族轨道记忆误差校正和语言处理,并最近引起了很多关注。确定线性代码的INSDEL距离是一个非常具有挑战性的问题。 Cheng-Guruswami-Haeupler-Li在线性代码的INSDEL距离上结合的半弹性子是线性代码的插入误差校正功能上的基本上限。另一方面,自然直接上限$ d_i(\ Mathcal C)\ Leq 2D_H(\ Mathcal C)$对于任何INSDEL代码都是有效的。在本文中,对于线性Insdel代码$ \ MATHCAL C $,我们提出了一个严格的半灵子上限$ d_i(\ Mathcal c)\ leq 2(n-2k+1)$,如果$ \ MATHCAL C $不占有所有1S的代码,并且所有1S和强度更强的Direct上限上限$ d_i(\ d_i(\ d_i)在弱条件下,其中$ t \ geq 1 $是由发电机矩阵确定的正整数。我们还提供了最佳的线性INSDEL代码,以达到我们严格的半辛顿绑定和直接上限,并表明相对于(严格的)半辛格尔顿界限的最佳二进制线性INSDEL代码的代码长度约为维度的两倍。有趣的是,给出了获得(严格的)半辛顿绑定的明确最佳线性INSDEL代码,代码长度独立于有限的字段大小。

Insertion-deletion codes (insdel codes for short) are used for correcting synchronization errors in communications, and in other many interesting fields such as DNA storage, date analysis, race-track memory error correction and language processing, and have recently gained a lot of attention. To determine the insdel distances of linear codes is a very challenging problem. The half-Singleton bound on the insdel distances of linear codes due to Cheng-Guruswami-Haeupler-Li is a basic upper bound on the insertion-deletion error-correcting capabilities of linear codes. On the other hand the natural direct upper bound $d_I(\mathcal C) \leq 2d_H(\mathcal C)$ is valid for any insdel code. In this paper, for a linear insdel code $\mathcal C$ we propose a strict half-Singleton upper bound $d_I(\mathcal C) \leq 2(n-2k+1)$ if $\mathcal C$ does not contain the codeword with all 1s, and a stronger direct upper bound $d_I(\mathcal C) \leq 2(d_H(\mathcal C)-t)$ under a weak condition, where $t\geq 1$ is a positive integer determined by the generator matrix. We also give optimal linear insdel codes attaining our strict half-Singleton bound and direct upper bound, and show that the code length of optimal binary linear insdel codes with respect to the (strict) half-Singleton bound is about twice the dimension. Interestingly explicit optimal linear insdel codes attaining the (strict) half-Singleton bound, with the code length being independent of the finite field size, are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源